

Efficient and Rapid Encoding of Mass Spectral Data for Interactive Visualization of 2D and 3D Hyperspectral Images

Alex Henderson^{1,2}, Stephen E. Reichenbach³, Qingping Tao⁴, John C. Vickerman^{1,2}

¹Surface Analysis Research Centre, University of Manchester, Manchester, UK ²SurfaceSpectra Ltd, Manchester, UK ³Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA ⁴GC Image LLC, Lincoln, Nebraska, USA

Background

With the advent of SIMS instrumentation that can provide 2D and 3D image data with high spatial resolution and high mass resolution at the same time, there is a problem with the volume of data. Here we present a data encoding system proving both efficient compression and quick access times.

SIMS Data Characteristics

Spectra from image pixels have a high number of zero intensity values, >90% in many cases. Probability distribution of intensity values decreases with intensity. Therefore, many of the non-zero intensity values are 1 and few intensity values exceed 255. Mass spectral peaks are wider than the ToF channels, so non-zero intensity values occur in clusters.

Data Encoding

Each pixel's spectrum is encoded individually. Store *differential* between **non-zero** time channels. Non-zero intensities and their ToF differentials coded separately.

Zero intensities and their ToFs are not encoded explicitly. Two-bit length codes indicate number of bytes required to store differential. > For ToF differential:

- 00 for differential zero
- 01 for differential 1 255
- 10 for differential 256 65535

11 for differential greater than 65535 \succ For intensities, the value is decreased by one and the same length codes are used. So, only two bits are required for ToF differentials equal to zero and only two bytes are required for intensity values equal to one. For fast decoding, coding system uses integer byte lengths.

Data Decoding

Each pixel encoding is indexed for fast retrieval. The two-bit length codes can be decoded quickly. \succ If the ToF differential is zero, then no additional decoding is required. \succ Similarly, if the intensity value is one, then no additional decoding is required. If additional decoding is required, only byte copies are necessary.

Coding Example

Non-zero ToF channels: 7, 50, 89, 188, 189, 198, 199, 200, ... ToF differentials (zeroes between non-zeroes): 6, 42, 38, 98, 0, 8, 0, 0, ... Two-bit length codes for ToF differentials: 01, 01, 01, 01, 00, 01, 00, 00, ... (binary) Additional bytes for ToF differentials: 06, 2A, 26, 62, 08, ... (hexadecimal)

Software for Multidimensional Chromatography

- (one byte for the value) (two bytes for the value)
- (four bytes for the value)

(no bytes required)

Dataset		GZIP			Adaptive l	Jnigram			PPM(3)				SIMS		
Name	Size (MB)	Encode Time (s)	Decode Time (s)	Size (MB)	Encode Time (s)	Decode Time (s)	Size (MB)		Encode Time (s)	Decode Time (s)	Size (MB)		Encode Time (s)	Decode Time (s)	Size (MB)
Example 1	3750	88	28	76	1621	1846		56	1743	2546		54	26	1	50
Example 2	5520	134	40	98	2386	2739		74	2760	4172		73	38	1	68
Example 3	5486	126	40	72	2380	2735		55	2501	3669		53	37	1	48
Example 4	5440	123	41	52	2414	2788		41	2347	3345		38	37	1	33

Examples

SIMS coding compared with GZIP (in java.util.zip), arithmetic coding with adaptive unigram model (in com.colloqual.arithcode[1]), and Prediction with Partial Matching (PPM(3), in com.colloquial.arithcode[2]). [1] B. Carpenter, www.colloquial.com, 2003. [2] J.G. Cleary and I.H. Witten, IEEE Trans. Computers, 32(4):396-402, 1984.

http://manchester.ac.uk/sarc/

			×		
	M7 mode				
	MZ mode				
	NA	NA			
	228.979107	510.0	- ^		
	228.986307	5//.0	-		
	228.99350/	523.0	-		
	223.000/0/	5/0.0	-		
	227.00/90/	605.0			
	229.013100	563.0			
	229.022500	563.0	-		
237 239	229.036710	490.0	-		
	229.043910	558.0	-		
5.0 240.0	4	h			
	Show Ma	iss-2 Range			